
N94-2:: 232

JOHN F. KENNEDY SPACE CENTER / _, 5 / _5" ,,_

UNIVERSITY OF CENTRAL FLORIDA to_

CONTROL OF A SERPENTINE MANIPULATOR WITH COLLISION AVOIDANCE

PREPARED BY:

ACADEMIC RANK:

UNIVERSITY AND DEPARTMENT:

Dr. Robert M. Byers

Assistant Professor

University of Central Florida

Department of Mechanical and

Aerospace Engineering

NASA/KSC

DIVISION:

BRANCH:

NASA COLLEAGUE:

DATE:

CONTRACT NUMBER:

Mechanical Engineering

Special Projects

Bill Jones
Gabor Tamasi

Todd Graham

August 10, 1993

University of Central Florida

NASA-NGT-60002 Supplement: 11

PlUK¢4_ff',iG PAGE _t._r,_K NOl FILMED
27 ,

: - 2

ACKNOWLEDGMENTS

The author gratefully acknowledges the support of the University of Central

Florida and the NASA personnel who made the Summer Faculty Fellowship Program a

productive and enjoyable experience. Especially noteworthy are the efforts of Dr. Ray
Hosler and Karl Stiles, who rode herd on the Faculty Fellows and kept everything running

smoothly. In addition, I wish to thank Gabor Tamasi, Bill Jones, and Todd Graham for

their encouragement and patience. I look forward to working with them in the future.

V

28

ABSTRACT

The robotics lab at the Kennedy Space Center is investigating the possibility of

using a "serpentine" manipulator for Shuttle inspection and payload processing.

Serpentine manipulators are characterized by a large number of degrees of freedom giving

them a high degree of redundancy. This redundancy allows them to be used to reach

confined areas while avoiding collisions with their environment. In this paper, the author

describes a new approach to controlling the joint rates for an n degree of freedom robot

such that it moves its end effector to a desired position while simultaneously avoiding

collision of any part of the robot arm with obstacles. Joint rates which move the end

effector toward the target are found via a Lyapunov stability function. The gradient of an

obstacle cost function indicates the direction toward obstacle collision in the joint space.

The component of the end effector joint rates orthogonal to the obstacle gradient becomes

the commanded joint rates. A notional eleven DOF model is used to numerically

demonstrate the efficacy of the control law.

29

TABLE OF CONTENTS

I. INTRODUCTION

II. MANIPULATOR KINEMATICS

m. INVERSE KII_MATICS

IV. LYAPUNOV STABILITY FOR END EFFECTOR TRAJECTORY

V. OBSTACLE AVOIDANCE

VI. LIMITATIONS ON JOINT RATES AND DEFLECTIONS

V=IIo

VIII.

XI.

CONCLUSIONS AND RECOMMENDATIONS

APPENDIX: MATHEMATICA PROGRAM FOR ROBOT SIMULATION

REFERENCES

k

3O

I. INTRODUCTION

The range of motion achievable by a robot manipulator's end effector is a function

of the number and type of joints or degrees of freedom it possesses. Any degrees of

freedom in excess of the minimum number required to reach an arbitrary end effector

position and orientation within the workspace are considered "redundant". Commercial

manipulators typically possess six or fewer DOF for primarily "anthropomorphic" tasks

such as industrial assembly and are therefore not redundant.

There are some tasks for which such standard manipulators are not well suited,

such as those requiring an extended reach in a confined workspace. For that reason, so-

called "serpentine" manipulators have attracted interest. Their designation and appearance

(Fig. 1) suggest the long reach and dexterity associated with snakes or tentacles. They

achieve this snake-like ability by possessing a high degree of redundancy. This

redundancy allows them, theoretically, to "wriggle" an end effector into a confined or

difficult to reach point while allowing the robot arm to be configured in such a way as to

not contact the surrounding environment.

Figure 1

Serpentine Manipulator

31

One possible application is the inspection and processing of shuttle orbiter

payloads in the Payload Changeout Room. During final launch preparations, tasks such as

connecting/disconnecting umbilicals, removal of lens covers, or visual inspections must be

carded out on Shuttle payloads. It is difficult and sometimes treacherous for technicians

to see or reach many of the points at which these processes must take place and the

payload itself may be put at risk. A serpentine robot is currently under development at

KSC to study the feasibility for its use for such tasks [1].

There are two traditional approaches to controlling robot motion: to determine

the dynamical equations of motion for each of the joints and generating the required

torque for desired end-effector motion, or to control the joint velocities in response to the
robot kinematics.

The complexity of serpentine motion, coupled with collision avoidance

requirements, typically dictate relatively slow motion. This usually renders the dynamics

of the robot arm negligible. Therefore, only the kinematics of the serpentine motion need
be addressed.

Several approaches to controlling redundant manipulators for collision avoidance

have been suggested. Maciejewski and Klein [2], Nakamura [3] and Wegerif, et al [4]

make use of the pseudo-inverse and some variations of null-motion. Sciavicco, and

Siciliano [5] make use of Lyapunov stability and an augmented configuration space to

track a prescribed trajectory and incorporate obstacle avoidance. Alternatively, Pasch

[1], and Asano [6] prescribe an end effector path and cause each joint to follow it in a

"follow-the-leader' mode. All of these methods require that at least the end effector's

trajectory and velocity be prescribed. This presumes that a clear path for the end effector

is easily determined. Only [4] allows for the end effector to deviate from the prescribed

path but only as an emergency measure.

In this paper, the author presents an alternative method for determining an

acceptable robot trajectory which allows the end effector's path, as well as the entrained
link's to be free to move around obstacles.

J

32

rl. MANIPULATOR _MATICS

The position and orientation of the end effector r aR m is described, using the

standard Denavitt-Hartenberg convention as a function of the generalized vector of joint

R"displacements q a for a manipulator with n joints.

r = r(q(t),t) (1)
m

At present, only the end effector's position is of interest, giving m = 3. The

Denavitt-Hartenberg convention, (described by Craig [7]), permits a single degree of

freedom for each joint. The rotation matrix which relates the ith link frame to the (i-l)th

frame is given by:

cos 0_ - sin 0_cos a,

,-_R=LSinoO , cosO, cos o_,sin c_,

sin 0, sin a, 1

- cos0, sin O_,iI
cosa; J

(2)

The angle ¢x_ reflects the rotation of the ith joint frame about the local x axis with respect

to the (i-1)th frame. The angle e i is the rotation angle of the ith joint and corresponds

to a component of the vector q_. The end of the ith link is located by the vector

j'o o (3)r_,= c,_,+'-:R[_l,
so that the end effector is located by:

(4)

a high degree of redundancy and by
Serpentine manipulators are characterized by

a distinctive structure. Revolute joints are essentially universal joints possessing two

degrees of freedom. This permits any link to have an arbitrary direction in space. Two

degrees of freedom are modeled in the D-H convention by incorporating links of zero

length. Following the D-H convention, the link frames are alternately rotated about the

link ±x axes with every other link having zero length. Equation (2) becomes:

cos0_ 0 mSin0_

{-1r12, i even o_d[oO, OcosO,
==>,_.R = s

a, = 7r/2, i odd -1 0

, odd

cos0f 0 sin0, 1

Sio0_ _ -c;s0' 1

(5)

The location of the link ends and the end effector is then found by Eq. (3). In this paper,

for simulation purposes, a notional 11 DOF manipulator is used. It consists of five links

each of unit length, each with 2 DOF and a base that can translate in the base frame x

direction. Numerical simulations and their graphical presentation were facilitated by

Mathematica [8], a symbolic mathematics soft-ware package.

33

in. INVERSE KI/_EMATICS

The velocity of the end effector is calculated by •

(6)

where the coefficient matrix ,(Or_/0q) = J, is the Jacobian matrix.
i

To achieve a desired trajectory for the end effector, when n>3, the differential equation

for the generalized joint displacements may be solved:

_q= (7)

where J_ is the Moore-Penrose pseudo inverse given by:

j.=j,(jj,)-' (s)

Eq. (7) yields the minimum norm solution for q. This solution assumes an appropriate

scaling metric as discussed by Doty, et al [9]. In fact, because in a redundant manipulator,

n>m, there are infinitely many solutions to Eq. (6). The joint rates are a function of those

rates which cause the end effector to move, qR and "null rates", q,v which do not. That

is, _q=q_.+q_N

by:

!

where qR is the minimum norm motion given by Eq. (7) and q-u is given

_u =(E"-J_J)_ (9)

where E n is the nxn identity matrix and _ _R" is an arbitrary vector. It is a simple

matter to confirm that qR and qN are orthogonal vectors by taking their inner product.

Alternatively, multiplying Eq. (8) by J yields the null vector.

The selection of # generates one of an infinite number of joint rate combinations

which move all of the link's but do not cause motion in the end effector. There have been

several control laws suggested which make use of the null motion to avoid obstacles.

Several of these are recapped by Nakamura [3] in some detail. A major shortcoming of

these methods is the requirement to prescribe the end effector path and velocity. Not only

can this be a difficult task in itself for a complex workspace, but, in some situations, it

proscribes joint motion which could avoid collisions.

-.,,,4

34

IV. LYAPUNOV STABILITY APPROACH TO END EFFECTOR TRAJECTORY

In contrast to the pseudo-inverse approach, the author has adopted a Lyapunov

stability measure similar to that in [5]. However, whereas the end effector in [5] tracks a

prescribed end effector path, here only the final end effector position is required. The

error vector e is defined:

e=r,-r (10)

where rr _R3

a fixed target

is the vector locating the target with respect to the robot base frame. For

e : -r (11)

The Lyapunov scalar function v is defined

, T (12)
v=_-e e

Because v is a positive scalar (related to the error's magnitude squared), then, if the time

derivative of v is negative, e will go to zero as time approaches infinity. Taking the time

derivative gives:

(13)

An obvious selection for qR is to make its elements proportional to the elements of jre.

One such solution is given by

. (d r e ") (14)

where M is a positive definite matrix of dimension n x n. The computational simplicity

of Eq. (14) contrasts starkly with the complexity of computing the motion using the

pseudo-inverse approach in Eq. (7). In addition, since q-R is a unit vector scaled by M

and no matrices must be inverted, the control law works well even in the vicinity of joint

singularities.

The importance of an appropriate metric must be emphasized. Doty, et al [9]

show that results may be obtained which are non-invariant with respect to choice of

reference frame or dimensional units used to describe the problem. In Eq. (14) qR has the

dimensions ofradians/time for revolute joints and length�time for prismatic joints. On the

right hand side of Eq. (14), J has dimensions of length/radians and length�length for

revolute and prismatic joints, respectively, while the error vector has the units of length.

35

10

Clearly the units of ./re are incompatible with qR" Normalizing ./re as a unit vector

renders it dimensionless and the matrix M serves to give the appropriate unit metric. In

addition, the selection of the magnitude of the elements of M may be used to emphasize

the motion of some joints over that of others. This aspect will be discussed later as a

means of avoiding excessive joint rates or deflections.

Figure 2 shows three simulations of robot motion for different values of a diagonal

matrix M. For all the maneuvers, the manipulator has an initial end effector position

r(0)=[3, 2, 0], shown in Fig. 2(a), and moves to a final end effector position ofr(tfl= [-3,

2, 0], indicated by the dot in the upper left portion of the workspace. In Fig. 2(b) the

final configuration and the end effector path are shown for M equal to the identity matrix.

That is, all of the joint rates are equally weighted. The end effector trajectory resembles a

damped sinusoid.

In Fig. 2(c) the motion of the last two revolute joints is given a weight of ten times

greater than the other nine joints. This causes the manipulator to attempt to reach the

target primarily by moving these two joints, which at one point causes a near singularity.

This is evidenced by the abrupt direction change of the end effector. Because of a fairly

large step size in the Mathematica program, the final conditions are not satisfied exactly.

In Fig. 2(d) the motion of the translating base and the first revolute joint are

emphasized by a factor of ten. The motion to the target is accomplished almost

exclusively by the motion of these two joints.

36

11

\ I

i

U \
(a)

i

(c)

\

I

\ /

ol • • m e

q
(b)

\ /'

e

(d)

\

Figure 2.

End Effector Trajectory Determined By Lyapunov Function

(a) Initial Configuration

(b) Final Configuration with Equal Weights on Joint Rates

(c) Final Configuration with Last Two Joint Rates Emphasized

(d) Final Configuration with First Two Joint Rates Emphasized

37

12

V. OBSTACLE AVOIDANCE

As noted before, most other proposed methods of obstacle avoidance presume a

prescribed end effector path that is obstacle free. This can be an important constraint

because it may require detailed knowledge of the work space or excessively complicated

path planing. By allowing the effector to seek its own path, the overall manipulator

configuration becomes much more robust in its ability to avoid obstacles.

As suggested by Khatib[lO], each obstacle is assigned a cost function. Figure 3

shows a representative manipulator arm with obstacle avoidance points __p,, i = 1,... np,

where p, = Lx, y_ z_J, identified along it. A likely location for such points would be

the manipulator joints and the link mid points but they may be dictated by sensor location

or other criteria. In this paper, obstacles are assumed to be rectangular parallelepipeds

with their center points oj , and with dimensions 2aj, 2bj, 2cj ,j= 1,...n o.

p_ Pe.-_ .p...,

Figure 3.

Typical Designated Obstacle Avoidance Points

The cost function for the Jth obstacle with respect to the ith obstacle avoidance

point is given by the super-ellipsoid

8

- yj- /'
Contact with the surface of the obstacle by the ith

A potential function is defined by:

(15)

point is approximated by Cj (p,) = 1.

+':XTXTfc,(p,)-,]-' (,6)
which guarantees that the cost becomes infinite before actual contract is made with the

obstacle. The gradient of the potential function is

OP

_=-_q (17)

38

13

The time rate of change of P can thus be expressed

dt - -

As one might expect, joint rates generated by Eq. (14) may also adversely change

the proximity to obstacles. However, if the only requirement on the joint rates is that the
error vector be decreased over every sub-interval, then an infinite number of trajectories

may be found which accomplish this. Assuming that at least one unobstructed trajectory

exists, one possible solution is to find the component of q_R from Eq. (14) which is

orthogonal to _. This results in _'=0. The Gram-Schimdt procedure described by

Luenberger [11], subtracts from qR its projection in the _ direction. This results in the

commanded joint rates:

A

where/1 is a unit vector parallel to _. A three dimensional analogy is shown in Figure 4.

Moving toward a destination, a traveler's path intersects a portion of a hill. The traveler's

location is analogous to the robot's current joint configuration; the hill is an obstacle.

Going uphill in the direction of the gradient, increases the cost. By moving along a

contour line of constant cost, orthogonal to the slope, the traveler may simultaneously

move closer to his destination without going uphill. Eventually a point is reached where

the target is downhill.

In the three dimensional analogous state, it is easy to see that if the destination lies

exactly opposite of the summit from the present position, forward motion eventually

becomes impossible (the cost becomes infinite). Motion stops for the robot in the event

that no motion whatever will move the end effector closer to the target without colliding

with an obstacle. In the n dimensional joint space however, this possibility recedes as n

becomes large. That is, although this algorithm does not explicitly require redundancy,

redundancy increases its robustness.

Figure 4.

Three Dimensional Analogy of Obstacle Avoidance

39

14

The control embodied in Eqs. (14) and (19) is demonstrated in the simulation

shown in Figure 5. Because the interest in serpentine manipulators is largely due to the

potential for reaching targets in constricted areas, in this example, the target is located

"down the hall and around the comer" with the walls modeled by three obstacles. A

collision free trajectory is generated by the method described above. Once again the end

effector trajectory is non-intuitive.

%..,.,"

(L. O. *1.) (1.2i. 0.1l.t.o.l.lSl.

(a) (b)

(3.67. t._MI. 8.135)
(].40. 2.4S. -O.lZl_

(e) (d)

Figure 5

Obstacle Avoidance Trajectory

(a) Initial Configuration

(b),(c) Intermediate Configurations

(d) Final Configuration

4O

15

VI. LIMITATIONS ON JOINT RATES AND DEFLECTIONS

In addition to avoiding obstacles, manipulator arms are frequently limited in .the

magnitude of the joint deflections which can be achieved. In addition, the joint rates are

usually limited by the manipulator architecture. While not explicitly examined in the

author's research, some possible solutions are suggested.

It has been demonstrated that the joint rates can be influenced by the weighting of

the elements of the matrix 34. The most straightforward approach is to weight each joint

rate independently by making M diagonal. The weight on each joint rate may be made a

function of its current deflection and commanded joint rate.

It is useful to think of the diagonal elements of M as the stiffness coefficients of n

non-linear spring. The deflection of the ith joint is bounded by q_, <q_ <-q_,-

Defining:

Ai = qim_ -- q_

F, = q._. + q,_

2qi - Fi

A_

rl, = sign[(jre_),]

(20)

The diagonal elements of M are defined:

m,,= i- l,...,,, (21)

where k i < q_ 12.

This function guarantees that the maximum allowable joint rate is never exceeded

and motion away from the maximum deflections is encouraged while motion toward

maximum deflection is discourage. This approach has not been implemented in any of

the examples in this paper and requires further verification.

41

16

VII. CONCLUSIONS AND RECOMMENDATIONS

A method for moving a serpentine manipulator's end effector to a target in a

constricted area while avoiding collision's of the manipulator's arm with the surrounding

workspace has been demonstrated. This method has the virtues of being computationally

straightforward. It is robust in the vicinity of singularities and multiple obstacles. While

it must be emphasized that this paper discusses only very preliminary results, the algorithm

appears to have great potential for successful implementation for achieving numerous

robot tasks.

Although the algorithm appears to be fairly versatile, the ability of the manipulator

to reach a target can be sensitive to its initial configuration relative to the target. While

path planning is not explicitly required, it is necessary to orient the robot with respect to

the target so that a likely path is unambiguous. In addition, it has been observed that there

are a number of cases in which the robot will not be able to reach the target. It is possible

for the end effector to arrive a point where no further forward motion is possible. This is

the case where a wide, flat obstacle is approached and only moving away from the target

will eventually result in a configuration in which forward motion. Additional heuristics

need to be developed to address this possibility.

The scaling matrix requires further research. While the suggested configuration

works adequately, there is room for improvement. Further research is especially

necessary in properly scaling the control vector in order to avoid joint rate and deflection

limitations. These limitations, although addressed in this paper, should be further

investigated in the context of a realistic robot architecture.

Finally, although Mathematica is a versatile programming tool, it is far too slow

for practical numerical integration. For implementation on an actual robot, programming

in C language is recommended. Mathematica may be linked to a C code to evaluate

symbolically complicated expressions such as the Jacobian matrix or the obstacle gradient

vector.

42

17

VIII. APPENDIX: MATHEMATICA PROGRAM FOR ROBOT SIMULATION

Mathematica was used to produce the simulations in this paper. The parameters in the

following program are those for the simulation depicted in Fig. 5. Mathematica

commands are shown in Courier font. Explanatory comments have been added in

Times Roman font.

ClearAll[x, theta, al,p,r0,J, T0] ;

Clear [n, d, obsnum] ;

JacobianMatrix[funs List, vars List] :=Outer[D, funs,vars];

Norm[vats_List] :=Sqrt [vars.vars] ;
UnitVector[vars List] :=vars/Sqrt[vars.vars];

al :=Array [alpha, n] ; (*Vector of frame rotation angles*)

x : =Append [Array [theta, n], d] ; (*Generalized Vector of joint displacements.

The translational displacement of the base is given by d.*)

p:=Array[1,n] ; (*Vector of link lengths*)

(*R[n] defines the rotation matrix relating the nth link frame to the (n-1)th frame using

standard Denavitt-Hartenberg convention *)

R[n] :={ [Cos [x[[n]]],-Cos [al [[n]]]

Sin[x[[n]]]},

{Sin[x[[n]]],Cos[al[[n]]]

Cos[x[[n]]] },

{0,Sin[al[[n]]],Cos[al[[n]]] }};

Sin[x[[n]]],Sin[al[[n]]]

Cos[x[[n]]],-Sin[all[n]]]

(*T0[n] gives the orientation of the nth link with respect to the base frame*)
T0[n] :=T0[n]=T0[n-l] .R[n];

TO [0T=IdentityMatrix [3] ;

R[0] =IdentityMatrix [3] ;

r0[n_] :=r0[n]=r0[n-l]+T0[n] . {p[[n]],0,0}; (*Endpointofnlhlink*)

mp[n] :=mp[n]=r0[n-1]+T0[n].{P[[n]]/2,0,0};(*MJdp°int°fnthlink*)

r0 [0] =[d, 0, 0} ;

mp[0] ={d, 0, 0} ;

(*Mampulator architeclureisdefinedby n, al, and p *)

n=10;

al = {Pi/2, -Pi/2, pi/2, -Pi/2, Pi/2, -Pi/2, Pi/2, -Pi/2, Pi/2, -Pi/2 };

p={0, i, 0, i,0, i,0, i,0, i};

joints=Table [Point[r0[i]], [i,0,n}]; (*Table of

plotting purposes*)
arm=Line [Table[r0[i],{i,0,n}]];(Line from joint

purposes*)
J=JacobianMatrix [r0 [n] ,x] ;

joint coordinates; for

to joint; for plotting

43

18

(*Obstacles are depicted as rectangular solids with six coordinates: first three values are

coodinates of mass center. Second three values are x,y,z dimensions*)
obsnum=3 ;

ob [i]={2,2, -.5, 2, 3, 5} ;

ob[2]={2.75,-.75,-.5, 3.5, .5, 5} ;

ob[3]={4.25,1.25,-.5, .5,3.5,5};

(*obstacleshape is a function which draws a rectangular solid in the plot to represent

each obstacle*)
obstacleshape[k] :=
Cuboid[{(ob[k] [[1]]-ob[k] [[4]]/2),

(ob[k] [[2]]-ob[k] [[5]]/2), (ob[k] [[3]]-ob[k] [[6]]/2)),

{ (ob[k] [[l]]+ob[k] [[4]]/2),

(ob[k] [[2]]+ob[k] [[5]]/2), (ob[k] [[3]]+ob[k] [[6]]/2) }] ;

(*cost is the potential function*)
cost= (Sum[Sum[
i/(Sum[((mp[i] [[j]]-ob[k] [[j]])/(ob[k] [[j+3]]/2))^8,

{j,l,3}]-l.l), {i,0,n}]+

I/(Sum[((r0[n] [[j]]-

ob[k] [[j]])/(ob[k] [[j+3]]/2))^8, {j,l,3}]-l.l),

{k,l,obsnum}]) ;

(* mu is the obstacle gradient vector*)
mu=Table [D [cost, x[[i]]], {i,l,n+l}] ;

step = . 05 ; (*step sine*)

imax = 100 ; (*ma_dmum number of steps*)

target ={3.5,2.5, 0};
d=0 ;

theta [1]=0;

theta[2]=N[Pi/2];

theta[3]=0;

theta[4]=-N[Pi/2];

theta[5]=0;

theta[6]=-N[Pi/2];

theta[7]=0;

theta [8]=0;

theta [9] =0 ;

theta [i0] =0;

pts={Point[r0[n]] };

base={Point[{d, 0,-3}] };

Metric=DiagonalMatrix [l, l, l, l, l,l,l,l,l,l,l] ;

• J
v

44

19

(* Robots im is a function which performs the actual simulation. It is largely devoted to

drawing the graphic images of the robot motion. It is started by compiling the program

and then typing "Robots im"*)
Robotsim: =

For [i=0, i<=imax, i++,

If[EvenQ[i], path=Append[p ts'P°int[r0[n]]];

track=Append[base, Point[{d, 0, -3}]];

Show [

Graphics3D [{{AbsoluteThickness [2],arm,
Cuboid[[d-.2,-.2,-3}, [d+.2, .2,0}] },

{RGBColor [i, 0, 0], PointSize [. 02], joints },

{RGBColor [0, 0, i], AbsoluteThickness [I], Table [path] },

{RGBColor [i, i, 0], AbsoluteThickness [I], Table [track] },

{RGBColor [0, I, 0], PointSize [.02], Point [target] },

{Table [obstacleshape [i], {i, I, obsnum}] },

[Text[NumberForm[r0[n],3], {0,5,0}, [-I, i}] } }],
Boxed->False, ViewPoint_> {0. 000, 0. 000,3. 384 }, PlotRange-> [{-

1,5}, [-1, 5}, {-3,5}}] ;

pts=path;
base=track;

Print [i]];
If[Sqrt[(target-r0[n]) . (target-r0[n])]<.001,i=imax] ;

(* The last six lines of code perform a fairly crude numerical integration with a first order

Euler's method*)
vr=UnitVector [(target-r0 [n]) .J.Metric] ;

nu=UnitVector [mu] ;

v=UnitVector[vr- vr.nu nu] ;

For [j=l, j<=n, j++,
new[j]=theta[j]+step v[[j]];theta[j] =new[j]] ;

new[n+l]=d+step v[[n+l]] ;d=new[n+l]];

45

20

IX. REFERENCES

[1] Pasch, K., "Self-Contained Deployable Serpentine Truss for Pre launch Access of

Space Shuttle Orbiter Payloads", NAS -2659-FM-9106-387, Final Report, Contract No.

NAS 10-11659. NASA, Kennedy Space Center, FL.

[2] Maciejewski, A., and Klein, C., "Obstacle Avoidance for Kinematically Redundant

Manipulators in Dynamically Varying Environments", The International Journal for

Robotics Research, Vol. 4, No. 3, Fall 1985, pp. 109-I 17.

[3] Nakamura, Y., Advanced Robotics, Redundancy and Optimization, Addison-Wesley,

Publishing Co., Inc., Redwood City, CA, 1991.

[4] Wegerif, D, Rosinski, D., and Parton, W., "Results of Proximity Sensing Research

for Real-Time Collision Avoidance of Articulated Robots Working Near the Space

Shuttle", Proceedings of the 6th Annual Conference on Recent Advances in Robotics,

University of Florida, Gainsville, FL, 19-20 April 1993.

[5] Sciavicco, L., and Siciliano, B., "A Solution Algorithm to the Inverse Kinematic

Problem for Redundant Manipulator", 1EEE,lournal of Robotics and Automation, Vol. 4,

No. 4, Aug. 1988, pp. 403-410.

[6] Asano, K, et al, "Multijoint Inspection Robot", [EEE Transactions on bTdustrial

Electronics, Voi. IE-30, No. 3, August 1983, pp. 277-281.

[7] Craig, J., Introduction to Robotics, 2nd Ed., Addison-Wesley, Publishing Co., Inc.,

Redwood City, CA, 1989.

[8] Wolfram, S., Mathematica,

City, CA, 1991.

2nd Ed., Addison-Wesley Publistfing Co., Inc.,Redwood

[9] Dory, K., Melchiorri, C., & Bonivento, C., " A Theory of Generalized Inverses

Applied to Robotics", The International Journal of Robotics Research, Vol. 12., No. I,

Feb. 1993, pp. 1-19.

[10] Khatib, O. and Le Maitre, J.-F., "Dynamic Control of Manipulators Operating in a

Complex Environment", Proc. 3rd [nt. CISM-1FToMM Symp., PP-267-282.

[11] Luenberger, D., Optimization by Vector Space Methods, John Wiley & Sons, Inc.,

New York, 1969.

[12] Nakamura, Y., and Hanafusa, H., "Optimal Redundancy Control of Robot

Manipulators", .International Journal of Robotics Research, Vol. 6, No. 1., Spring 1987,

pp. 32-42.

46

